Главная » Разное » Какие зонные теории бывают. Зонная теория твердых тел. Квантовая механика для чайников. Диэлектрики. Виды поляризации. Электропроводность диэлектриков. Виды диэлектрических потерь в электроизаляционных материалах

Какие зонные теории бывают. Зонная теория твердых тел. Квантовая механика для чайников. Диэлектрики. Виды поляризации. Электропроводность диэлектриков. Виды диэлектрических потерь в электроизаляционных материалах

Физические основы зонной теории

  1. Твёрдое тело представляет собой идеально периодический кристалл.
  2. Равновесные положения узлов кристаллической решётки фиксированы, то есть ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы , вводятся впоследствии как возмущение электронного энергетического спектра.
  3. Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.

Ряд явлений, по существу многоэлектронных, таких, как ферромагнетизм , сверхпроводимость , и таких, где играют роль экситоны , не может быть последовательно рассмотрен в рамках зонной теории. Вместе с тем, при более общем подходе к построению теории твёрдого тела оказалось, что многие результаты зонной теории шире ее исходных предпосылок.

Зонная структура различных материалов

В различных веществах, а также в различных формах одного и того же вещества, энергетические зоны располагаются по-разному. По взаимному расположению этих зон вещества делят на три большие группы (см. Рисунок 1):

  • металлы - зона проводимости и валентная зона перекрываются, образуя одну зону, называемую зоной проводимости, таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твёрдому телу разности потенциалов , электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.
  • полупроводники - зоны не перекрываются, и расстояние между ними составляет менее 3.5 эВ [источник? ] . Для того, чтобы перевести электрон из валентной зоны в зону проводимости, требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные , нелегированные) полупроводники слабо пропускают ток.
  • диэлектрики - зоны не перекрываются, и расстояние между ними составляет более 3.5 эВ . Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.

Зонная теория является основой современной теории твёрдых тел. Она позволила понять природу и объяснить важнейшие свойства проводников, полупроводников и диэлектриков. Величина запрещённой зоны между зонами валентности и проводимости является ключевой величиной в зонной теории, она определяет оптические и электрические свойства материала.

Поскольку одним из основных механизмов передачи электрону энергии является тепловой, то проводимость полупроводников очень сильно зависит от температуры . Также проводимость можно увеличить, создав разрёшенный энергетический уровень в запрещённой зоне путём легирования . Таким образом создаются все полупроводниковые приборы: солнечные элементы (преобразователи света в электричество), диоды , транзисторы , твердотельные лазеры и другие.

Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного - электрона, и положительного - дырки), обратный переход - процессом рекомбинации .

Методы расчёта зонной структуры

Энергетический спектр электронов в кристалле в одноэлектронном приближении описывается уравнением Шрёдингера :

где - периодический потенциал кристалла.

Нахождение собственных функций и значений уравнения Шрёдингера по сути складывается из двух частей. Первая часть - это определение периодического потенциала, вторая сводится к решению уравнения при данном потенциале . Расчёт зонной структуры конкретных полупроводников крайне затруднен в силу целого ряда причин, и прежде всего потому, что отсутствует аналитическое выражение для . Поэтому при любых расчётах в формулах содержатся некоторые параметры, значение которых определяется на основе сравнения с экспериментальными данными. Например, ширина запрещённой зоны определяется только экспериментально.

Наиболее широко в конкретных расчетах зонной структуры используются следующие методы:

См. также

Литература

Гуртов В. А. Твердотельная электроника

Цидильковский И. М. Электроны и дырки в полупроводниках. Энергетический спектр и динамика. М.: «Наука» 1972 г.

Киреев П. С. Физика полупроводников. М.: «Высшая школа» 1975 г.

Примечания


Wikimedia Foundation . 2010 .

  • Государственный дальневосточный университет
  • Запрещённая зона

Смотреть что такое "Зонная теория" в других словарях:

    ЗОННАЯ ТЕОРИЯ - твёрдых тел, квантовая теория энергетич. спектра эл нов в кристалле, согласно к рой этот спектр состоит из чередующихся зон (полос) разрешённых и запрещённых энергий. З. т. объясняет ряд св в и явлений в кристалле, в частности разл. хар р… … Физическая энциклопедия

    ЗОННАЯ ТЕОРИЯ Современная энциклопедия

    ЗОННАЯ ТЕОРИЯ - квантовая теория, объясняющая поведение электронов в твердых телах. Основной результат зонной теории: разрешенные значения энергии электронов в твердом теле образуют определенные интервалы разрешенные зоны, которые могут быть отделены друг от… … Большой Энциклопедический словарь

    Зонная теория - ЗОННАЯ ТЕОРИЯ, квантовая теория, объясняющая свойства твердых тел, обусловленные электронами (электропроводность, теплопроводность металлов, оптические свойства и другие). Электроны твердого тела не могут иметь любую энергию. Значения энергии… … Иллюстрированный энциклопедический словарь

    зонная теория - квантовая теория, объясняющая поведение электронов в твердых телах. Основной результат зонной теории: разрешённые значения энергии электронов в твердом теле образуют определенные интервалы разрешённые зоны, которые могут быть отделены друг от… … Энциклопедический словарь

    ЗОННАЯ ТЕОРИЯ - один из осн. разделов квантовой теории твёрдых тел, представляющий собой приближённую теорию движения электронов в периодич. поле кристаллической решётки. Согласно 3. т. из за сближения атомов в кристалле на расстояния порядка размеров самих… … Большой энциклопедический политехнический словарь

    зонная теория - juostinė teorija statusas T sritis fizika atitikmenys: angl. band theory vok. Bandtheorie, f; Bändertheorie, f rus. зонная теория, f pranc. théorie des bandes, f … Fizikos terminų žodynas

    Зонная теория - твёрдого тела, раздел квантовой механики (См. Квантовая механика), рассматривающий движение электронов в твёрдом теле. Свободные электроны могут иметь любую энергию их энергетический спектр непрерывен. Электроны, принадлежащие… … Большая советская энциклопедия

    Зонная теория Адамса - Зонная система, зонная теория Адамса метод определения оптимальной экспозиции фотоплёнки и параметров проявления полученного снимка, сформулированный Анселом Адамсом и Фредом Арчером в 1939 1940 годах. Зонная система позволяет фотографам… … Википедия

    зонная теория твёрдого тела - juostinė kietojo kūno teorija statusas T sritis fizika atitikmenys: angl. band theory of solids vok. Festkörper Zonentheorie, f rus. зонная теория твёрдого тела, f pranc. théorie des bandes du corps solide, f … Fizikos terminų žodynas

Энергетический спектр электронов в твердом теле существенно отличается от энергетического спектра свободных электронов (являющегося непрерывным) или спектра электронов, принадлежащих отдельным изолированным атомам (дискретного с определенным набором доступных уровней) - он состоит из отдельных разрешенных энергетических зон, разделенных зонами запрещенных энергий.

Согласно квантово-механическим постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (электрон находится на одной из орбиталей). В случае же системы нескольких атомов, объединенных химической связью, электронные орбитали расщепляются в количестве, пропорциональном количеству атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического уровня, количество орбиталей становится очень велико, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой - энергетические уровни расщепляются до двух практически непрерывных дискретных наборов - энергетических зон.

Наивысшая из разрешенных энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной, следующая за ней - зоной проводимости. В проводниках зоной проводимости называется наивысшая разрешенная зона, в которой находятся электроны при температуре 0 К. Именно по принципу взаимного расположения этих зон все твердые вещества и делят на три большие группы (см. рис.):

  • проводники - материалы, у которых зона проводимости и валентная зона перекрываются (нет энергетического зазора), образуя одну зону, называемую зоной проводимости (таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию);
  • диэлектрики - материалы, у которых зоны не перекрываются и расстояние между ними составляет более 3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят);
  • полупроводники - материалы, у которых зоны не перекрываются и расстояние между ними (ширина запрещенной зоны) лежит в интервале 0,1–3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые полупроводники слабо пропускают ток).

Зонная теория является основой современной теории твердых тел. Она позволила понять природу и объяснить важнейшие свойства металлов, полупроводников и диэлектриков. Величина запрещенной зоны (энергетическая щель между зонами валентности и проводимости) является ключевой величиной в зонной теории и определяет оптические и электрические свойства материала. Например, в полупроводниках проводимость можно увеличить, создав разрешенный энергетический уровень в запрещенной зоне путем легирования - добавления в состав исходного основного материала примесей для изменения его физических и химических свойств. В этом случае говорят, что полупроводник примесный. Именно таким образом создаются все полупроводниковые приборы: солнечные элементы, диоды, твердотельные и др. Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного - электрона, и положительного - дырки), а обратный переход - процессом рекомбинации.

Зонная теория имеет границы применимости, которые исходят из трех основных предположений: а) потенциал кристаллической решетки строго периодичен; б) взаимодействие между свободными электронами может быть сведено к одноэлектронному самосогласованному потенциалу (а оставшаяся часть рассмотрена методом теории возмущений); в) взаимодействие с фононами слабое (и может быть рассмотрено по теории возмущений).

Иллюстрации


Автор

  • Разумовский Алексей Сергеевич

Изменения внесены

  • Наймушина Дарья Анатольевна

Источники

  1. Физический энциклопедический словарь. Т. 2. - М.: Большая Российская энциклопедия, 1995. - 89 с.
  2. Гуров В. А. Твердотельная электроника. - М.: Техносфера, 2008. - 19 с.

Используя уравнение Шредингера - основное уравнение динамики в нерелятивистской квантовой механике, - в принципе, можно рассмотреть задачу о кристалле, например, найти возможные значения его энергии, а также соответствующие энергетические, состояния. Однако как в классической, так и в квантовой механике отсутствуют методы точного решения динамической задачи для системы многих частиц. Поэтому эта задача решается приближенно сведением задачи многих частиц к одноэлектронной задаче - задаче об одном электроне, движущемся в заданном внешнем поле. Подобный путь приводит к зонной теории твердого тела. Будем считать, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер. Рассмотрим мысленно процесс образования твердого тела из изолированных атомов. Известно, что электроны, находясь внутри атома, обладают дискретными значениями энергии. Изолированные атомы, находящиеся друг от друга на макроскопических расстояниях, имеют совпадающие схемы энергетических уровней. По мере «сжатия» вещества до кристаллической решетки, т.е. когда расстояния между атомами станут равными межатомным расстояниям в твердых телах, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются в зоны. Образуется, так называемый, зонный энергетический уровень (рис. 12). Заметно расщепляются и расширяются лишь уровни внешних валентных электронов, наиболее слабо связанных с ядром и имеющих наибольшую энергию, а также наиболее высокие уровни, которые в основном состоянии атома вообще электронами не заняты. Уровни же внутренних электронов слабо подвержены этому. Таким образом, в твердых телах внутренние электроны ведут себя так же, как в изолированных атомах, внешние

(валентные) же электроны «коллективизированы» - принадлежат всему твердому телу.

Образование зонного энергетического спектра в кристалле является квантовомеханическим эффектом и вытекает из состояния неопределенностей. Благодаря переходу через потенциальный барьер внешних электронов атомов в кристалле, среднее время жизни г валентного электрона в. данном атоме по сравнению с изолированным атомом существенно уменьшается и составляет примерно 10 -15 с (для изолированного атома -=10 -8 с). Время же жизни электрона в каком-либо состоянии связано с неопределенностью его энергии (шириной уровня) соотношением неопределенностей = . Следовательно, если естественная ширина спектральных линий составляет примерно 10 -7 эВ, то в кристаллах = 1 10 эВ, т.е. энергетические уровни валентных электронов расширяются в зону дозволенных значений энергии.


Энергия внешних электронов может принимать значения в пределах разрешенных энергетических зон. Каждая разрешенная зона «вмещает» в себя столько близлежащих дискретных уровней, сколько атомов содержит кристалл. Расстояние между соседними энергетическими уровнями в зоне составляет приблизительно 10 -22 эВ. Так как оно столь ничтожно, то зоны можно считать практически непрерывными, однако факт конечного числа уровней в зоне играет важную роль в определении характера распределения электронов по состояниям. Разрешенные энергетические зоны разделены зонами запрещенных значений энергии, называемыми запрещенными энергетическими зонами . В запрещенных зонах электроны находиться не могут. Ширина зон не зависит от размеров кристалла. Разрешенные зоны тем шире, чем слабее связь валентных электронов с ядрами. Итак, в общем случае в твердых телах образуются три зоны (рис. 13). Валентная зона полностью заполнена электронами и образована из энергетических уровней электронов внутренних оболочек свободных атомов. Зона проводимости (свободная зона) либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электро­нов изолированных атомов.

В металлах эти зоны частично заполнены электронами или пере­крываются, а распределение электронов по энергиям подчиняется статистике Ферми-Дирака. Внутризонные переходы вполне возможны, т.к., например, при 1К энергия теплового движения КТ=10 -4 эВ, т.е. есть гораздо больше разности энергий между соседними уровнями зоны (10 -22 эВ).

Если в кристалле окажутся одна целиком заполненная (валентная) зона и одна свободная зона (проводимости), то это вещество будет полупроводник или диэлектрика зависимости от ширины запрещенной зоны 0 .

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при ОК в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриком и полупроводником определяется шириной запрещенных зон: для диэлектриков она довольно широка (1 10) эВ (например, для NaCl 0 = 6 эВ), для полупроводников - достаточно узка 0 1эВ (например, для германия 0 =0,72 эВ). При температурах, близких к ОК, полупроводники ведут себя как диэлектрики, т.е. переброска электронов в зону проводимости не происходит.

Проводимость полупроводников, с точки зрения зонной теории объясняется тем, что дополнительная энергия, необходимая для преодоления ширины запрещенной зоны, электрону сообщается за счет внешних факторов. Электрон, перешедший в зону проводимости, увеличивает электропроводимость полупроводника и оставляет в

валентной зоне свободное место, которое называют дыркой. Во внешнем электрическом поле электрон с соседнего энергетического уровня в валентной зоне может перейти в дырку и оставит вместо себя свободное место - дырку. Дырка перемещается в направлении, обратном перемещению электрона, т.е. ведет себя в электрическом поле подобно положительному заряду.

Итак, при внешних воздействиях полупроводник приобретает одновременно два типа проводимости - электронную и дырочную.

В качестве примера, показывающего роль полупроводников в современной жизни, можно привести то, что полупроводниковые (кристаллические усилители) - транзисторы, пришли на смену электронным лампам. В транзисторе никаких явных электродов (как в лампе) нет, вместо них микроскопические области единого кристалла, куда введены микродозы определенных примесей. Причем микродозами примесей можно создать в кристалле не только усилительные (транзисторные) структуры, но и другие «детали», -резисторы, конденсаторы, соединительные линии. Примерно через 10 лет после появления первых транзисторов, в 1959 году была создана первая интегральная схема (ИС) из четырех (integer - целый) транзисторов - триггер. Затем несколько микросхем свели в одну и создали универсальный блок обработки информации, получивший название микропроцессора.

Сегодня ИС превратилась в такой шедевр, как микропроцессор Pentium-Pro - плоский кристалл размером с небольшую почтовую марку, где сформирован сложнейший электронный агрегат - из пяти миллионов транзисторов. Микропроцессоры не только быстро совершенствуются, но и становятся более доступными, берут на себя огромные объемы расчетной, контрольной, управленческой, графической и иной интеллектуальной работы, подтверждая свою репутацию величайшего достижения цивилизации.

Элементы физики твердого тела

§ 240. Понятие о зонной теории твердых тел

Используя уравнение Шредингера - ос­новное уравнение динамики в нерелятиви­стской квантовой механике,- в принципе можно рассмотреть задачу о кристалле, например найти возможные значения его энергии, а также соответствующие энерге­тические состояния. Однако как в класси­ческой, так и в квантовой механике отсут­ствуют методы точного решения динами­ческой задачи для системы многих частиц. Поэтому эта задача решается приближен­но сведением задачи многих частиц к одноэлектронной задаче - задаче об одном электроне, движущемся в заданном внеш­нем поле. Подобный путь приводит к зон­ной теории твердого тела.

В основе зонной теории лежит так называемое адиабатическое приближение. Квантово-механическая система разделя­ется на тяжелые и легкие частицы - ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Счи­тая, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодиче­ском поле ядер.

Далее используется приближение са­мосогласованного поля. Взаимодействие данного электрона со всеми другими элек­тронами заменяется действием на него стационарного электрического поля, обла­дающего периодичностью кристалличе­ской решетки. Это поле создается усредненным в пространстве зарядом всех дру­гих электронов и всех ядер. Таким образом, в рамках зонной теории много­электронная задача сводится к задаче о движении одного электрона во внешнем периодическом поле - усредненном и со­гласованном поле всех ядер и электронов.

Рассмотрим мысленно процесс образо­вания твердого тела из изолированных атомов. Пока атомы изолированы, т. е. на­ходятся друг от друга на макроскопиче­ских расстояниях, они имеют совпадаю­щие схемы энергетических уровней (рис. 313). По мере «сжатия» нашей моде­ли до кристаллической решетки, т. е. когда расстояния между атомами станут равны­ми межатомным расстояниям в твердых телах, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются в зоны, образуется так называемый зонный энергетический спектр.

Из рис. 313; на котором показано рас­щепление уровней как функция расстоя­ния r между атомами, видно, что заметно расщепляются и расширяются лишь уров­ни внешних, валентных электронов, наибо-

лее слабо связанных с ядром и имеющих наибольшую энергию, а также более высо­кие уровни, которые в основном состоянии атома вообще электронами не заняты. Уровни же внутренних электронов либо совсем не расщепляются, либо расщепля­ются слабо. Таким образом, в твердых телах внутренние электроны ведут себя так же, как в изолированных атомах, валент­ные же электроны «коллективизирова­ны» - принадлежат всему твердому телу.

Образование зонного энергетического спектра в кристалле является квантово-механическим эффектом и вытекает из соотношения неопределенностей. В кри­сталле валентные электроны атомов, свя­занные слабее с ядрами, чем внутрен­ние электроны, могут переходить от атома к атому сквозь потенциальные барьеры, разделяющие атомы, т. е. перемещаться без изменений полной энергии (туннель­ный эффект, см. § 221). Это приводит к то­му, что среднее время жизни т валентного электрона в данном атоме по сравнению с изолированным атомом существенно уменьшается и составляет примерно 10 -1 5 с (для изолированного атома оно примерно 10 -8 с). Время же жизни элек­трона в каком-либо состоянии связано с неопределенностью его энергии (шири­ной уровня) соотношением неопределенно­стей E~h/ (см. (215.5)). Следователь­но, если естественная ширина спектраль­ных линий составляет примерно 10 -7 эВ, то в кристаллах E1 - 10 эВ, т. е. энер­гетические уровни валентных электронов расширяются в зону дозволенных значе­ний энергии.

Энергия внешних электронов может принимать значения в пределах закрашен­ных на рис. 313 областей, называемых разрешенными энергетическими зонами. Каждая разрешенная зона «вмещает» в себя столько близлежащих дискретных уровней, сколько атомов содержит кристалл: чем больше в кристалле атомов, тем теснее расположены уровни в зоне. Расстояние между соседними энергетиче­скими уровнями в зоне составляет при­близительно 10 -2 2 эВ. Так как оно столь ничтожно, то зоны можно считать практи­чески непрерывными, однако факт конечного числа уровней в зоне играет важ­ную роль для распределения электронов по состояниям.

Разрешенные энергетические зоны разделены зонами запрещенных значений энергии, называемыми запрещенными энергетическими зонами. В запрещенных зонах электроны находиться не могут. Ши­рина зон (разрешенных и запрещенных) не зависит от размера кристалла. Разре­шенные зоны тем шире, чем слабее связь валентных электронов с ядрами.

Зонная теория твёрдого тела – это теория валентных электронов, движущихся в периодическом потенциальном поле кристаллической решётки; она является основой современных представлений о механизмах различных физических явлений, происходящих в твёрдом теле при воздействии на него электромагнитного поля.

Отдельные атомы (таковыми можно считать атомы газов,
паров, твёрдого тела, если предположить, что расстояния между ними много больше периода кристаллической решётки) могут обладать вполне определённой энергией, или, как говорят, могут занимать определённые энергетические уровни. Такие атомы имеют дискретный энергетический спектр (пример такого спектра приведён на рисунке 1.9 слева). Часть этих энергетических уровней заполнена при невозбуждённом (нормальном) состоянии атома, на других уровнях электроны могут находиться лишь тогда, когда атом возбуждён внешним энергетическим воздействием (увеличение температуры, электрическое поле, электромагнитное или радиоактивное излучение и др.). Возбуждённый атом, как и любая система, стремится к устойчивому состоянию, т.е. к состоянию с минимальной внутренней энергией. Это приводит к излучению энергии возбуждённым атомом в момент перехода электрона на тот энергетический уровень, где энергия атома минимальна. При изменении внешнего воздействия атом может вернуться в нормальное, невозбуждённое состояние.

Рисунок 1.9. Расположение энергетических уровней: уединённого атома – слева от вертикальной пунктирной линии; твёрдого тела – справа.

При сближении отдельных атомов на расстояния характерные для кристаллической решётки происходит перекрытие внешних электронных оболочек, что существенно изменяет характер движения электронов. Теперь электроны могут без изменения энергии посредством обмена переходить от одного атома к другому т.е. перемещаться по кристаллу. Обменное взаимодействие имеет чисто квантовую природу и является следствием неразличимости электронов. Как уже указывалось при рассмотрении ионной и металлической связей, в этом случае уже нельзя говорить о принадлежности того или иного электрона конкретному атому – каждый валентный электрон принадлежит всем атомам кристаллической решётки одновременно т.е. происходит обобществление электронов.

Вследствие обменного взаимодействия энергетические уровни изолированного атома в твёрдом теле расщепляются в энергетические зоны (см. рис.1.9). Разрешённые энергетические зоны разделены запрещёнными интервалами энергии, т.е. промежутками значений энергии, которыми электрон в данном кристалле обладать не может. Ширина разрешённых энергетических зон не зависит от размеров кристалла, а определяется природой атомов, образующих твёрдое тело и симметрией кристаллической решётки. Расщепляются в зону не только нормальные (стационарные), но и возбуждённые энергетические уровни. Чем выше по энергетической шкале разрешённая зона, тем больше её ширина и тем меньше ширина запрещённой зоны.

Каждая зона состоит из множества энергетических уровней, их количество определяется числом атомов, составляющих твёрдое тело, т.е. в кристалле конечных размеров расстояние между уровнями обратно пропорционально числу атомов. В 1 см 3 кристаллического твёрдого тела содержится 10 22 – 10 23 атомов. Поскольку ширина валентной, например, зоны не превышает единиц эВ, то уровни в этой зоне отстоят друг от друга на 10 -22 – 10 -23 эВ. Следовательно, энергетическая зона характеризуется квазинепрерывным спектром и достаточно ничтожно малой энергии, чтобы вызвать переход электронов с одного уровня на другой, если там имеются свободные состояния (уровни).

В соответствии с принципом Паули на каждом энергетическом уровне может находиться не более двух электронов, поэтому число электронных состояний в зоне оказывается конечным и равным числу соответствующих атомных состояний. Конечным оказывается и число электронов, заполняющих данную энергетическую зону. Подобно энергетическим уровням изолированного атома энергетические зоны кристалла могут быть полностью заполненными, частично заполненными и свободными (пустыми). Внутренние электронные оболочки в изолированных атомах заполнены, поэтому соответствующие им зоны (нижние) также оказываются полностью заполненными.

Самую верхнюю из заполненных зон называют валентной – эта зона соответствует энергетическим уровням валентных электронов внешней оболочки изолированных атомов. Ближайшую к ней свободную, незаполненную электронами зону называют зоной проводимости . Взаимное положение этих зон определяет большинство процессов, происходящих в твёрдом теле.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта