Главная » Зажигание » Робот на пульте управления своими руками. Сделать робота в домашних условиях самостоятельно? Легко! Этапы изготовления домашнего робота

Робот на пульте управления своими руками. Сделать робота в домашних условиях самостоятельно? Легко! Этапы изготовления домашнего робота

Любители электроники, люди интересующиеся робототехникой не упускают возможность самостоятельно сконструировать простого или сложного робота, насладиться самим процессом сборки и результатом.

Не всегда есть время и желание на уборку дома, но современные технологию позволяют создавать роботов уборщиков. К таковым можно отнести робота пылесоса, который ездит часами по комнатам и собирает пыль.

С чего начать если возникло желание создать робота своими руками? Конечно же первые роботы должны быть просты в создании. Робот, о котором пойдет речь в сегодняшней статье, не займет много времени и не требует особых навыков.

Продолжая тему создание роботов своими руками, предлагаю попробовать сделать танцующего робота из подручных средств. Для создания робота своими руками потребуются простые материалы, которые найдутся наверное практически в каждом доме.

Разнообразие роботов не ограничивается конкретными шаблонами, по которым эти роботы создаются. Людям постоянно приходят в голову оригинальные интересные идеи, как сделать робота. Одни создают статичные скульптуры роботов, другие создают динамичные скульптуры роботов, о чем и пойдет речь в сегодняшней статье.

Сделать робота своими руками может любой, даже ребенок. Робот, описание которого пойдет ниже, прост в создании и не требует много времени. Попробую привести описание этапов создания робота своими руками.

Порой идеи создания робота приходят совсем неожиданно. Если поразмышлять на тему, как заставить робота из подручных средств двигаться, возникает мысль о батарейках. Но, что если всё гораздо проще и доступнее? Давайте попробуем сделать робота своими руками используя мобильный телефон в качестве основной детали. Для создания вибро робота своими руками понадобятся следующие материалы.

Наверняка, насмотревшись фильмов про роботов, тебе не раз хотелось построить своего боевого товарища, но ты не знал с чего начать. Конечно, у тебя не получится построить двуногого терминатора, но мы и не стремимся к этому. Собрать простого робота может любой, кто умеет правильно держать паяльник в руках и для этого не нужно глубоких знаний, хотя они и не помешают. Любительское роботостроение мало чем отличается от схемотехники, только гораздо интереснее, потому что тут так же затронуты такие области, как механика и программирование. Все компоненты легкодоступны и стоят не так уж и дорого. Так что прогресс не стоит на месте, и мы будем его использовать в свою пользу.

Введение

Итак. Что же такое робот? В большинстве случаев это автоматическое устройство, которое реагирует на какие-либо действия окружающей среды. Роботы могут управляться человеком или выполнять заранее запрограммированные действия. Обычно на роботе располагают разнообразные датчики (расстояния, угла поворота, ускорения), видеокамеры, манипуляторы. Электронная часть робота состоит из микроконтроллера (МК) – микросхема, в которую заключён процессор, тактовый генератор, различная периферия, оперативная и постоянная память. В мире существует огромное количество разнообразных микроконтроллеров для разных областей применения и на их основе можно собирать мощных роботов. Для любительских построек широкое применение нашли микроконтроллеры AVR. Они, на сегодняшний день, самые доступные и в интернете можно найти много примеров на основе этих МК. Чтобы работать с микроконтроллерами тебе нужно уметь программировать на ассемблере или на Cи и иметь начальные знания в цифровой и аналоговой электронике. В нашем проекте мы будем использовать Cи. Программирование для МК мало чем отличается от программирования на компьютере, синтаксис языка такой же, большинство функций практически ничем не отличаются, а новые довольно легко освоить и ими удобно пользоваться.

Что нам нужно

Для начала наш робот будет уметь просто объезжать препятствия, то есть повторять нормальное поведение большинства животных в природе. Всё что нам потребуется для постройки такого робота можно будет найти в радиотехнических магазинах. Решим, как наш робот будет передвигаться. Самым удачным я считаю гусеницы, которые применяются в танках, это наиболее удобное решение, потому что гусеницы имеют большую проходимость, чем колёса машины и ими удобнее управлять (для поворота достаточно вращать гусеницы в разные стороны). Поэтому тебе понадобится любой игрушечный танк, у которого гусеницы вращаются независимо друг от друга, такой можно купить в любом магазине игрушек по разумной цене. От этого танка тебе понадобится только платформа с гусеницами и моторы с редукторами, остальное ты можешь смело открутить и выкинуть. Так же нам потребуется микроконтроллер, мой выбор пал на ATmega16 – у него достаточно портов для подключения датчиков и периферии и вообще он довольно удобный. Ещё тебе потребуется закупить немного радиодеталей, паяльник, мультиметр.

Делаем плату с МК



Схема робота

В нашем случае микроконтроллер будет выполнять функции мозга, но начнём мы не с него, а с питания мозга робота. Правильное питание – залог здоровья, поэтому мы начнём с того, как правильно кормить нашего робота, потому что на этом обычно ошибаются начинающие роботостроители. А для того, чтобы наш робот работал нормально нужно использовать стабилизатор напряжения. Я предпочитаю микросхему L7805 – она предназначена, чтобы на выходе выдавать стабильное напряжение 5В, которое и нужно нашему микроконтроллеру. Но из-за того, что падение напряжения на этой микросхеме составляет порядка 2,5В к нему нужно подавать минимум 7,5В. Вместе с этим стабилизатором используются электролитические конденсаторы, чтобы сгладить пульсации напряжения и в цепь обязательно включают диод, для защиты от переполюсовки.
Теперь мы можем заняться нашим микроконтроллером. Корпус у МК - DIP (так удобнее паять) и имеет сорок выводов. На борту имеется АЦП, ШИМ, USART и много другого, что мы пока использовать не будем. Рассмотрим несколько важных узлов. Вывод RESET (9-ая нога МК) подтянут резистором R1 к «плюсу» источника питания – это нужно делать обязательно! Иначе твой МК может непреднамеренно сбрасываться или, проще говоря – глючить. Так же желательной мерой, но не обязательной является подключение RESET’а через керамический конденсатор C1 к «земле». На схеме ты так же можешь увидеть электролит на 1000 мкФ, он спасает от провалов напряжения при работе двигателей, что тоже благоприятно скажется на работе микроконтроллера. Кварцевый резонатор X1 и конденсаторы C2, C3 нужно располагать как можно ближе к выводам XTAL1 и XTAL2.
О том, как прошивать МК, я рассказывать не буду, так как об этом можно прочитать в интернете. Писать программу мы будем на Cи, в качестве среды программирования я выбрал CodeVisionAVR. Это довольно удобная среда и полезна новичкам, потому что имеет встроенный мастер создания кода.


Плата моего робота

Управление двигателями

Не менее важным компонентом в нашем роботе является драйвер двигателей, который облегчает нам задачу в управлении им. Никогда и ни в коем случае нельзя подключать двигатели напрямую к МК! Вообще мощными нагрузками нельзя управлять с микроконтроллера напрямую, иначе он сгорит. Пользуйтесь ключевыми транзисторами. Для нашего случая есть специальная микросхема – L293D. В подобных несложных проектах всегда старайтесь использовать именно эту микросхему с индексом «D», так как она имеет встроенные диоды для защиты от перегрузок. Этой микросхемой очень легко управлять и её просто достать в радиотехнических магазинах. Она выпускается в двух корпусах DIP и SOIC. Мы будем использовать в корпусе DIP из-за удобства монтажа на плате. L293D имеет раздельное питание двигателей и логики. Поэтому саму микросхему мы будем питать от стабилизатора (вход VSS), а двигатели напрямую от аккумуляторов (вход VS). L293D выдерживает нагрузку 600 мА на каждый канал, а этих каналов у неё два, то есть к одной микросхеме можно подключить два двигателя. Но, чтобы перестраховаться, мы объединим каналы, и тогда потребуется по одной микре на каждый двигатель. Отсюда следует, что L293D сможет выдержать 1.2 А. Чтобы этого добиться нужно объединить ноги микры, как показано на схеме. Микросхема работает следующим образом: когда на IN1 и IN2 подаётся логический «0», а на IN3 и IN4 логическая единица, то двигатель вращается в одну сторону, а если инвертировать сигналы – подать логический ноль, тогда двигатель начнёт вращаться в другую сторону. Выводы EN1 и EN2 отвечают за включение каждого канала. Их мы соединяем и подключаем к «плюсу» питания от стабилизатора. Так как микросхема греется во время работы, а установка радиаторов проблематична на этот тип корпуса, то отвод тепла обеспечивается ногами GND - их лучше распаивать на широкой контактной площадке. Вот и всё, что на первое время тебе нужно знать о драйверах двигателей.

Датчики препятствий

Чтобы наш робот мог ориентироваться и не врезался во всё, мы установим на него два инфракрасных датчика. Самый простейший датчик состоит из ик-диода, который излучает в инфракрасном спектре и фототранзистор, который будет принимать сигнал с ик-диода. Принцип такой: когда перед датчиком нет преграды, то ик-лучи не попадают на фототранзистор и он не открывается. Если перед датчиком препятствие, тогда лучи от него отражаются и попадают на транзистор – он открывается и начинает течь ток. Недостаток таких датчиков в том, что они могут по-разному реагировать на различные поверхности и не защищены от помех - от посторонних сигналов других устройств датчик, случайно, может сработать. От помех может защитить модулирование сигнала, но пока мы этим заморачиватся не будем. Для начала, и этого хватит.


Первый вариант датчиков моего робота

Прошивка робота

Чтобы оживить робота, для него нужно написать прошивку, то есть программу, которая бы снимала показания с датчиков и управляла двигателями. Моя программа наиболее проста, она не содержит сложных конструкций и всем будет понятна. Следующие две строки подключают заголовочные файлы для нашего микроконтроллера и команды для формирования задержек:

#include
#include

Следующие строки условные, потому что значения PORTC зависят от того, как ты подключил драйвер двигателей к своему микроконтроллеру:

PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 1;
PORTC.3 = 0;

Значение 0xFF означает, что на выходе будет лог. «1», а 0x00 – лог. «0».

Следующей конструкцией мы проверяем, есть ли перед роботом препятствие и с какой оно стороны:

If (!(PINB & (1< {
...
}

Если на фототранзистор попадает свет от ик-диода, то на ноге микроконтроллера устанавливается лог. «0» и робот начинает движение назад, чтобы отъехать от препятствия, потом разворачивается, чтобы снова не столкнуться с преградой и затем опять едет вперёд. Так как у нас два датчика, то мы проверяем наличие преграды два раза – справа и слева и потому можем узнать с какой стороны препятствие. Команда «delay_ms(1000)» указывает на то, что пройдёт одна секунда, прежде чем начнёт выполняться следующая команда.

Заключение

Я рассмотрел большинство аспектов, которые помогут тебе собрать твоего первого робота. Но на этом робототехника не заканчивается. Если ты соберёшь этого робота, то у тебя появится куча возможностей для его расширения. Можно усовершенствовать алгоритм робота, как например, что делать, если препятствие не с какой-то стороны, а прямо перед роботом. Так же не помешает установить энкодер – простое устройство, которое поможет точно располагать и знать расположение твоего робота в пространстве. Для наглядности возможна установка цветного или монохромного дисплея, который может показывать полезную информацию – уровень заряда аккумулятора, расстояние до препятствия, различную отладочную информацию. Не помешает и усовершенствование датчиков – установка TSOP (это ик-приёмники, которые воспринимают сигнал только определённой частоты) вместо обычных фототранзисторов. Помимо инфракрасных датчиков существуют ультразвуковые, стоят подороже, и тоже не лишены недостатков, но в последнее время набирают популярность у роботостроителей. Для того, чтобы робот мог реагировать на звук, было бы неплохо установить микрофоны с усилителем. Но по-настоящему интересным, я считаю, установка камеры и программирование на её основе машинного зрения. Есть набор специальных библиотек OpenCV, с помощью которых можно запрограммировать распознавание лиц, движения по цветным маякам и много всего интересного. Всё зависит только от твоей фантазии и умений.
Список компонентов:
  • ATmega16 в корпусе DIP-40>
  • L7805 в корпусе TO-220
  • L293D в корпусе DIP-16 х2 шт.
  • резисторы мощностью 0,25 Вт номиналами: 10 кОм х1 шт., 220 Ом х4 шт.
  • конденсаторы керамические: 0.1 мкФ, 1 мкФ, 22 пФ
  • конденсаторы электролитические: 1000 мкФ х 16 В, 220 мкФ х 16В х2 шт.
  • диод 1N4001 или 1N4004
  • кварцевый резонатор на 16 МГц
  • ИК-диоды: подойдут любые в количестве двух штук.
  • фототранзисторы, тоже любые, но реагирующие только на длину волны ик-лучей
Код прошивки:
/*****************************************************
Прошивка для робота

Тип МК: ATmega16
Тактовая частота: 16,000000 MHz
Если у тебя частота кварца другая, то это нужно указать в настройках среды:
Project -> Configure -> Закладка "C Compiler"
*****************************************************/

#include
#include

Void main(void)
{
//Настраиваем порты на вход
//Через эти порты мы получаем сигналы от датчиков
DDRB=0x00;
//Включаем подтягивающие резисторы
PORTB=0xFF;

//Настраиваем порты на выход
//Через эти порты мы управляем двигателями
DDRC=0xFF;

//Главный цикл программы. Здесь мы считываем значения с датчиков
//и управляем двигателями
while (1)
{
//Едем вперёд
PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 1;
PORTC.3 = 0;
if (!(PINB & (1< {
//Едем назад 1 секунду
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
//Заворачиваем
PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
}
if (!(PINB & (1< {
//Едем назад 1 секунду
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
//Заворачиваем
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 1;
PORTC.3 = 0;
delay_ms(1000);
}
};
}

О моём роботе

В данный момент мой робот практически завершён.


На нём установлена беспроводная камера, датчик расстояния (и камера и этот датчик установлены на поворотной башне), датчик препятствия, энкодер, приёмник сигналов с пульта и интерфейс RS-232 для соединения с компьютером. Работает в двух режимах: автономном и ручном (принимает сигналы управления с пульта ДУ), камера также может включаться/выключаться дистанционно или самим роботом для экономии заряда батарей. Пишу прошивку для охраны квартиры (передача изображения на компьютер, обнаружение движений, объезд помещения).

По пожеланиям выкладываю видео:

UPD. Перезалил фотографии и сделал небольшие поправки в тексте.

Сейчас уже мало кто помнит, к сожалению, что в 2005 году были Chemical Brothers и у них был замечательный клип - Believe, где роботизированная рука гонялась по городу за героем видео.

Тогда у меня появилась мечта. Несбыточная на тот момент, т. к. ни малейшего понятия об электронике у меня не было. Но мне хотелось верить - believe. Прошло 10 лет, и буквально вчера мне удалось впервые собрать своего собственного робота-манипулятора, запустить его в работу, затем сломать, починить, и снова запустить в работу, а попутно найти друзей и обрести уверенность в собственных силах.

Внимание, под катом спойлеры!

Всё началось с (привет, Мастер Кит, и спасибо, что разрешили написать в вашем блоге!), который был почти сразу найден и выбран после этой статьи на Хабре. На сайте говорится, что собрать робота - под силу даже 8-летнему ребёнку - чем я хуже? Я точно так же только пробую свои силы.

Сначала была паранойя

Как истинный параноик, сразу выскажу опасения, которые у меня изначально были относительно конструктора. В моём детстве сперва были добротные советские конструкторы, потом рассыпающиеся в руках китайские игрушки… а потом детство кончилось:(

Поэтому из того, что осталось в памяти об игрушках, было:

  • Пластмасса будет ломаться и крошиться в руках?
  • Детали будут неплотно подходить друг к другу?
  • В наборе будут не все детали?
  • Собранная конструкция будет непрочной и недолговечной?
И, наконец, урок, который был вынесен из советских конструкторов:
  • Часть деталей придётся допиливать напильником
  • А части деталей просто не будет в наборе
  • И ещё часть будет изначально не работать, её придётся менять
Что я могу сказать сейчас: не зря в моем любимом клипе Believe главный герой видит страхи там, где их нет. Ни одно из опасений не оправдалось : деталей было ровно столько, сколько нужно, все они подходили друг к другу, на мой взгляд - идеально, что очень сильно поднимало настроение по ходу работы.

Детали конструктора не только отлично подходят друг к другу, но также продуман тот момент, что детали почти что невозможно перепутать . Правда, с немецкой педантичностью создатели отложили винтиков ровно столько сколько нужно , поэтому терять винтики по полу или путать «какой куда» при сборке робота нежелательно.

Технические характеристики:

Длина: 228 мм
Высота: 380 мм
Ширина: 160 мм
Вес в сборке: 658 гр.

Питание: 4 батарейки типа D
Вес поднимаемых предметов: до 100 гр
Подсветка: 1 светодиод
Тип управления: проводной дистанционный пульт
Примерное время сборки: 6 часов
Движение: 5 коллекторных моторов
Защита конструкции при движении: храповик

Подвижность:
Механизм захвата: 0-1,77""
Движение запястья: в пределах 120 градусов
Движение локтя: в пределах 300 градусов
Движение плеча: в пределах 180 градусов
Вращение на платформе: в пределах 270 градусов

Вам понадобятся:

  • удлинённые плоскогубцы (не получится обойтись без них)
  • боковые кусачки (можно заменить на нож для бумаги, ножницы)
  • крестовая отвёртка
  • 4 батарейки типа D

Важно! О мелких деталях

Кстати о «винтиках». Если вы сталкивались с подобной проблемой, и знаете, как сделать сборку ещё удобнее - добро пожаловать в комментарии. Пока что поделюсь своим опытом.

Одинаковые по функции, но разные по длине болты и шурупы достаточно чётко прописаны в инструкции, например, на средней фото внизу мы видим болты P11 и P13. А может P14 - ну, то есть, вот опять, я снова их путаю. =)

Различить их можно: в инструкции прописано, какой из них сколько миллиметров. Но, во-первых, не будешь же сидеть со штангенциркулем (особенно если тебе 8 лет и\или у тебя его попросту нет), а, во-вторых, различить их в итоге можно только, если положить рядом, что может не сразу прийти на ум (мне не пришло, хе-хе).

Поэтому заранее предупрежу, если надумаете собирать этого или похожего робота сами, вот вам подсказка:

  • либо заранее присмотритесь к крепёжным элементам;
  • либо купите себе побольше мелких винтов, саморезов и болтов, чтобы не париться.

Также, ни в коем случае не выбрасывайте ничего, пока не закончите сборку. На нижней фотографии в середине, между двумя деталями от корпуса «головы» робота - небольшое кольцо, которое чуть не полетело в мусор вместе с прочими «обрезками». А это, между прочим, держатель для светодиодного фонарика в «голове» механизма захвата.

Процесс сборки

К роботу прилагается инструкция без лишних слов - только изображения и чётко каталогизированные и промаркированные детали.

Детали достаточно удобно откусываются и зачистки не требуют, но мне понравилась идея каждую деталь обработать ножом для картона и ножницами, хотя это и не обязательно.

Сборка начинается с четырёх из пяти входящих в конструкцию моторов, собирать которые настоящее удовольствие: я просто обожаю шестерёночные механизмы.

Моторчики мы обнаружили аккуратно упакованными и «прилипшими» друг к другу - готовьтесь ответить на вопрос ребёнка, почему коллекторные моторчики магнитятся (можно сразу в комментариях! :)

Важно: в 3 из 5 корпусов моторчиков нужно утопить гайки по бокам - на них в дальнейшем мы посадим корпуса при сборке руки. Боковые гайки не нужны только в моторчике, который пойдёт в основу платформы, но чтобы потом не вспоминать, какой корпус куда, лучше утопите гайки в каждом из четырёх жёлтых корпусов сразу. Только для этой операции будут нужны плоскогубцы, в дальнейшем они не понадобятся.

Примерно через 30-40 минут каждый из 4х моторов оказался снабжён своим шестереночным механизмом и корпусом. Собирается всё не сложнее, чем в детстве собирался «Киндер-сюрприз», только гораздо интереснее. Вопрос на внимательность по фото выше: три из четырёх выходных шестерёнок черные, а где белая? Из её корпуса должны выходить синий и чёрный провод. В инструкции это всё есть, но, думаю, обратить на это внимание ещё раз стоит.

После того, как у вас на руках оказались все моторы, кроме «головного», вы приступите к сборке платформы, на которой будет стоять наш робот. Именно на этом этапе ко мне пришло понимание, что с шурупами и винтами надо было поступать более вдумчиво: как видно на фото выше, двух винтов для скрепления моторчиков вместе за счет боковых гаек мне не хватило - они уже были где-то мною же вкручены в глубине уже собранной платформы. Пришлось импровизировать.

Когда платформа и основная часть руки собраны, инструкция предложит вам перейти к сбору механизма захвата, где полно мелких деталей и подвижных частей - самое интересное!

Но, надо сказать, что на этом спойлеры закончатся и начнутся видео, так как мне нужно было ехать на встречу с подругой и робота, которого не удалось успеть закончить, пришлось захватить с собой.

Как стать душой компании при помощи робота

Легко! Когда мы продолжили сборку вместе, стало понятно: собирать робота самостоятельно - очень приятно. Работать над конструкцией вместе - приятно вдвойне. Поэтому смело могу рекомендовать этот набор для тех, кто не хочет сидеть в кафе за скучными разговорами, но хочет повидаться с друзьями и хорошо провести время. Более того, мне кажется, и тимбилдинг с таким набором - например, сборка двумя командами, на скорость - практически беспроигрышный вариант.

Робот ожил в наших руках сразу, как только мы закончили сборку. Передать вам наш восторг, я, к сожалению, не могу словами, но, думаю, многие меня здесь поймут. Когда конструкция, которую ты сам собрал вдруг начинает жить полноценной жизнью - это кайф!

Мы поняли, что жутко проголодались и пошли поесть. Идти было недалеко, поэтому робота мы донесли в руках. И тут нас ждал ещё один приятный сюрприз: робототехника не только увлекательна. Она ещё и сближает. Как только мы сели за столик, нас окружили люди, которые хотели познакомиться с роботом и собрать себе такого же. Больше всего ребятам понравилось здороваться с роботом «за щупальца», потому что ведёт он себя действительно как живой, да и в первую очередь это же рука! Словом, основные принципы аниматроники были освоены пользователями интуитивно . Вот как это выглядело:

Troubleshooting

По возвращении домой меня ждал неприятный сюрприз, и хорошо, что он случился до публикации этого обзора, потому что теперь мы сразу обговорим troubleshooting.

Решив попробовать подвигать рукой по максимальной амплитуде, удалось добиться характерного треска и отказа функциональности механизма мотора в локте. Сначала это меня огорчило: ну вот, новая игрушка, только собрана - и уже больше не работает.

Но потом меня осенило: если ты сам её только что собрал, за чем же дело стало? =) Я же прекрасно знаю набор шестерёнок внутри корпуса, а чтобы понять, сломался ли сам мотор, или просто недостаточно хорошо был закреплён корпус, можно не вынимая моторчика из платы дать ему нагрузку и посмотреть, продолжатся ли щелчки.

Вот тут-то мне и удалось почувствовать себя настоящим робо-мастером!

Аккуратно разобрав «локтевой сустав», удалось определить, что без нагрузки моторчик работает бесперебойно. Разошёлся корпус, внутрь выпал один из шурупов (потому что его примагнитил моторчик), и если бы мы продолжили эксплуатацию, то шестерёнки были бы повреждены - в разобранном виде на них была обнаружена характерная «пудра» из стёршейся пластмассы.

Очень удобно, что робота не пришлось разбирать целиком. И классно на самом деле, что поломка произошла из-за не совсем аккуратной сборки в этом месте, а не из-за каких-то заводских трудностей: их в моём наборе вообще обнаружено не было.

Совет: первое время после сборки держите отвёртку и плоскогубцы под рукой - могут пригодиться.

Что можно воспитать благодаря данному набору?

Уверенность в себе!

Мало того, что у меня нашлись общие темы для общения с совершенно незнакомыми людьми, но мне также удалось самостоятельно не только собрать, но и починить игрушку! А значит, я могу не сомневаться: с моим роботом всегда всё будет ок. И это очень приятное чувство, когда речь идёт о любимых вещах.

Мы живём в мире, где мы страшно зависим от продавцов, поставщиков, сотрудников сервиса и наличия свободного времени и денег. Если ты почти ничего не умеешь делать, тебе за всё придётся платить, и скорее всего - переплачивать. Возможность починить игрушку самому, потому что ты знаешь, как у неё устроен каждый узел - это бесценно. Пусть у ребёнка такая уверенность в себе будет.

Итоги

Что понравилось:
  • Собранный по инструкции робот не потребовал отладки, запустился сразу
  • Детали почти невозможно перепутать
  • Строгая каталогизация и наличие деталей
  • Инструкция, которую не надо читать (только изображения)
  • Отсутствие значимых люфтов и зазоров в конструкциях
  • Лёгкость сборки
  • Лёгкость профилактики и починки
  • Last but not least: свою игрушку собираешь сам, за тебя не трудятся филиппинские дети
Что нужно ещё:
  • Ещё крепёжных элементов, прозапас
  • Детали и запчасти к нему, чтобы можно было заменить при необходимости
  • Ещё роботов, разных и сложных
  • Идеи, что можно улучшить\приделать\убрать - словом, на сборке игра не заканчивается! Очень хочется, чтобы она продолжалась!
Вердикт:

Собирать робота из этого конструктора - не сложнее, чем паззл или «Киндер-сюрприз», только результат гораздо масштабнее и вызываЛ бурю эмоций у нас и окружающих. Отличный набор, спасибо,

Мы с командой делаем робота для участия в Битве Роботов . Наш робот называется «Большой Брат», и он смотрит на тебя! Смотрит, настигает и разносит вдребезги. Хищный нрав и мощные кинетические орудия делают его идеальной машиной для убийства. Он уже здесь, он рядом - беги!

Это краткая история разработки боевого робота в домашних условиях. Осторожно трафик! Много изображений.



Описание конкурса

Мы принимаем участие в конкурсе "Бронебот 2015: Осенний разогрев " (http://www.bronebot.ru/). Бои роботов - это популярное шоу в Великобритании и США уже более 25 лет. В Москве будет проводиться в первый раз. Приезжает судить Питер Редмонд, президент Ирландской Федерации Боев Роботов, Вице-президент Английской Федерации Боев Роботов, создатель спецэффектов «Top Gear» и «Игр Престолов». Когда нам предложили участвовать в конкурсе мы согласились без вопросов, хотя зря…

Времени очень мало, но мы стараемся изо всех сил.

Регламент конкурса

Ниже представлена информация для конструкторов по созданию роботов-участников боёв Бронебот.

1. Конструкция

1.1. Вес. Роботы представлены в трех весовых категориях. В зависимости от выбранной участником категории, максимальный вес роботов составляет:

  • Тяжелый класс: 100 кг.
  • Средний класс: 50 кг.
  • Легкий класс: 17 кг.

Для ходящих роботов предельный вес составляет на 30% больше во всех классах. Ходящие роботы не должны использовать коленвал для перемещения.

1.2. Максимальные размеры конструкции зависят от категории:

  • Тяжелый класс: 1.5 х 1 метров в длину и ширину.
  • Средний класс: 1 х 0.75 метров в длину и ширину.
  • Легкий класс: 0.5 х 0.5 метров в длину и ширину.
  • Высота не ограничена.

1.3. Разрешено использование кластерных роботов (способных разделяться на несколько независимых роботов). При начале боя робот должен быть единым целым. При повреждении 50% ботов и более, робот считается проигравшим.

1.4. Роботы должны быть оснащены тумблерами ВКЛВЫКЛ в части, отдаленной от оружия, полностью отключающими питание всех подсистем робота. Если тумблеров несколько, они должны находиться рядом. Тумблеры могут быть спрятаны под оболочкой, но должны быть доступными без переворачивания робота или разборки с помощью инструментов.

1.5. Летающие роботы запрещены.

2. Электричество

2.2. Все электрические соединения должны сделаны качественно и на должном уровне изолированы. Кабели должны быть проложены с минимальным шансом быть разорванными.

2.3. Аккумуляторы должны быть полностью изолированные и не содержать жидкостей. Соединения аккумуляторов должны быть полностью изолированными.

2.4. Двигатели внутреннего сгорания запрещены.

3. Гидравлика

3.1. Давление в гидравлических линиях не должно превышать 204 атм (3000 psi/20.4 mps).

3.2. Гидравлические жидкости должны находиться в надежных емкостях внутри робота. Все гидравлические линии должны быть проложены с минимальным шансом быть поврежденными.

4. Пневматика

4.1. Давление в пневматеческих линиях не должно превышать 68 атм (1000 psi/6.8 mps).

4.2. Пневматические емкости должны быть подлежащего качества, промышленного производства. Давление в них должно соответствовать спецификации производителя.

4.3. Пневматические емкости должны быть закреплены внутри робота и защищены от повреждений.

4.4. Газы для пневматики должны быть невоспламеняющимися или инертными, например, воздух, углекислый газ, аргон, азот.

4.5. Должна быть предусмотрена возможность спустить давление в системе без разбора конструкции.

5. Оружие
5.1. Каждый робот должен быть оснащен минимум одним активным оружием.

  • Пиротехника
  • Огнеметы
  • Жидкости
  • Едкие вещества
  • Неуправляемые снаряды
  • Электрошокеры
  • Радиоглушители
  • Тепловые пушки
  • Гауссганы
  • Любое оружие, использующее горящие или воспламеняющиеся газы

5.3. Скорость вращающегося оружия (циркулярные пилы, вращающиеся лезвия и т.п.) не должны превышать спецификации производителя. Спецификации должны быть доступны для проверки.

5.4. Вращающие диски из закаленной стали и лезвия, которые при поломке образовывают осколки, запрещены.

5.5. Длина лезвийштыков не должна превышать 20 см.

5.6. Все подвижные манипуляторы, даже не содержащие оружия, должны иметь фиксирующие крепежи. Крепежи должны быть закрытыми во всех случаях, кроме нахождения робота на арене или техобслуживании.

5.7. Все острые грани и элементы оружия должны иметь крышки или насадки. Эти элементы не учитываются при взвешивании.

6. Радиоуправление

6.1. Используемые частоты должны быть разрешены законодательством РФ.

6.2. Робот не должен обладать автономностью. Все управление должно осуществляться исключительно с пульта оператора.

6.3. Все системы роботов должны быть отключаться при потере управляющего сигнала.

6.4. Стабильность управления должна быть продемонстрирована Организаторам заранее для допуска к участию.

6.5. Для избежания конфликтов частоты между роботами участники должны иметь два набора “передатчик-приемник”, работающих на разных частотах.

Арена


Бои будут проходить на специальной пуленепробиваемой сцене 10х10 метров со скошенными углами, т.е. фактически это восьмиугольник.

Другие роботы

Большинство роботов имеют богатый опыт участия в соревнованиях, но это только делает задачу выиграть у них еще интересней.

Наша команда


Каждый член команды делает все от него зависящее для достижения светлого будущего, но особо хочется выделить работу Саши и Андрея. Они вкладывают в робота все свое свободное время. То, что наш робот уничтожит всех остальных - это именно их заслуга!

  • Вячеслав Голицын
  • Александр Егоров
  • Андрей Такташов
  • Дмитрий Елисеев
  • Павел Поздняков

Краткое описание робота


Просмотрев огромное количество видео соревнований роботов, мы поняли для себя основные характеристики робота, которые дают преимущества на поле брани:

  • Низкий центр масс
  • Низкий клиренс
  • Возможность повернуться в случае переворота
  • Возможность опрокинуть соперника
  • Геометрия корпуса как пассивная защита.

Так родилась идея создать робота в форме пирамиды с главным орудием в виде спаренного молота для возможности наносить удары в две стороны, двумя малыми молотами по бокам, и вилочным опрокидывателем.

Так же из фич: Отделяемая часть робота, и пилы.

Каркас, форма, сборка

Разрезаем профиль


Варим раму





Колеса со строительного рынка

Двигатели


У нас была очень большая надежда на шаговые двигатели Nema 43. По заявленным характеристикам они нам подходили, мы варили под них раму. При подключении оказалось, что справится с какой-либо нагрузкой они не смогут. В срочном порядке пришлось искать другое решение. Мы нашли двигатели 36В 500Вт и уже переделали раму под них.

Радиоуправление

Радиуправление происходит через 8-канальную радиоаппаратуру для основного оператора, 4 канальную аппаратура для оператора орудий и 2-канальную аппаратуру отделяемой части.

Обработкой ШИМ-сигнала с пульта занимается Arduino (Душа моего робота-газонокосилки). Проблема с обработкой заключалась в том, что на подсчет ШИМ-сигнала с 8 каналов уходит много времени. Выполняя это в основном цикле программы, оказывалось невозможно отправлять на драйверы двигателей адекватное количество пульсов для движения. Решением было выведение работы с шаговиками в функцию запускаемую по таймеру и изменением параметров таймера в основном цикле. Сейчас уже оказывается все это не нужно, коллекторными двигателями мы управляем через драйвер, на который будем подавать ШИМ, который смело можно изменять в основном цикле программы.


Пневмосистема

Пневмосистема в разборе:


Главной идеей было использовать для каждого двуходового цилиндра по 4 клапана, которые перекрестно соединены. Когда мы открываем клапан для наполнения цилиндра с одной стороны открываем для стравливания клапан с противоположной стороны.

Для управления клапанами решили использовать такой модуль с 8 реле, которых как раз хватает для 16 попарно-соединенных клапана, т.е. для 4 цилиндров.



Орудия

Главный молот. Над дизайном главного молота-кирки думаем и спорим.


В качестве пил мы решили использовать двигатели кошения и ножи от Robomow. Во-первых ножи сделаны из прочной стали, а двигатели дают хороший момент и количество оборотов. Во-вторых Robomow согласились нас спонсировать ими.

Видео

P.S.: Готовлю вторую часть, так же готовимся к конкурсу автономных роботов-газонокосилок .

P.P.S. (для тех, кто считает, что времени мало):


Кому не хотелось бы иметь универсального помощника, готового выполнить любое поручение: помыть посуду, закупить продуктов, поменять колесо в автомобиле, да и отвезти детей в сад, а родителей на работу? Идея создания механизированных ассистентов занимает инженерные умы ещё с древних времён. А Карел Чапек даже придумал слово, обозначающее механического слугу – робота, выполняющего обязанности вместо человека.

К счастью, в нынешнем цифровом веке, такие помощники наверняка вскоре станут реальностью. На самом деле, интеллектуальные механизмы уже помогают человеку в выполнении домашних дел: робот-пылесос уберётся, пока хозяева на работе, мультиварка поможет приготовить еду, не хуже скатерти-самобранки, а игривый щенок Айбо радостно принесёт тапочки или мяч. Сложные роботы используются на производстве, в медицине и космосе. Они позволяют частично, а то и полностью, заменить труд человека в сложных или опасных условиях. Андроиды при этом пытаются внешне походить на людей, тогда как промышленные роботы обычно создаются из экономических и технологических соображений и внешний декор у них отнюдь не в приоритете.

Но, оказывается, можно попытаться сделать робота с помощью подручных средств. Так, можно сконструировать оригинальный механизм из телефонной трубки, компьютерной мышки, зубной щётки, старого фотоаппарата или вездесущей пластиковой бутылки. Разместив на платформе несколько датчиков, можно запрограммировать такого робота на выполнение простых операций: регулировку освещённости, подачу сигналов, движение по комнате. Конечно, это далеко не многофункциональный помощник из фантастических фильмов, зато такое занятие развивает изобретательность и творческое инженерное мышление, и безоговорочно вызывает восхищение у тех, кто считает роботостроение абсолютно не кустарным делом.

Киборг из коробки

Одно из самых простых решений на пути к тому, чтобы сделать робота – приобрести готовый набор для робототехники с пошаговым руководством. Этот вариант подойдёт также тем, кто собирается серьёзно заниматься техническим творчеством, ведь в одном пакете находятся все необходимые детали для механики: от электронных плат и специализированных датчиков, до запаса болтиков и наклеек. Вместе с инструкциями, позволяющими создать довольно сложный механизм. Благодаря множеству аксессуаров такой робот может послужить отличной базой для творчества.

Основных школьных знаний по физике и навыков с уроков труда вполне достаточно для сборки первого робота. Разнообразные сенсоры и моторы подчиняются пультам управления, а специальные среды программирования позволяют создать настоящих киборгов, умеющих выполнять команды.

Например, датчик механического робота может фиксировать наличие или отсутствие поверхности перед прибором, а программный код указывать, в какую сторону следует поворачивать колёсную базу. Такой робот ни за что не упадёт со стола! Кстати, по схожему принципу работают настоящие роботы-пылесосы. Помимо проведения уборки по заданному расписанию и умения вовремя возвращаться на базу для подзарядки, этот интеллектуальный помощник может самостоятельно строить траектории уборки помещения. Поскольку на полу могут располагаться разнообразные препятствия, такие как стулья и провода, роботу приходится постоянно сканировать предлежащий путь и огибать такие помехи.

Для того чтобы собственноручно созданный робот умел выполнять различные команды, производители предусматривают возможность его программирования. Составив алгоритм поведения робота в различных условиях, следует создать код взаимодействия датчиков с окружающим миром. Это осуществимо благодаря наличию микрокомпьютера, являющегося мозговым центром такого механического робота.

Мобильный механизм собственного изготовления

Даже без специализированных, и обычно дорогостоящих, наборов, вполне возможно сделать механический манипулятор подручными средствами. Итак, загоревшись замыслом создания робота, следует внимательно проанализировать запасы домашних закромов на предмет наличия невостребованных запчастей, которые могут быть использованы в этой творческой затее. В ход пойдут:

  • моторчик (например, от старой игрушки);
  • колёса от игрушечных автомобилей;
  • детали конструкторов;
  • картонные коробки;
  • стержни авторучек;
  • скотч разных видов;
  • клей;
  • пуговицы, бусинки;
  • винтики, гайки, скрепки;
  • всевозможные провода;
  • лампочки;
  • батарейка (подходящая моторчику по напряжению).

Совет: «Нелишним навыком при создании робота будет умение обращаться с паяльником, ведь он поможет надёжно скрепить механизм, в особенности электрические компоненты».

С помощью этих общедоступных составляющих можно сотворить настоящее техническое чудо.

Итак, для того чтобы сделать собственного робота из доступных в домашних условиях материалов, следует:

  1. подготовить найденные детали для механизма, проверить их работоспособность;
  2. нарисовать макет будущего робота, учитывая наличное оборудование;
  3. сложить корпус для робота из конструктора или картонных деталей;
  4. приклеить или спаять запчасти, отвечающие за движение механизма (например, скрепить моторчик робота с колёсной базой);
  5. обеспечить электропитание мотора, присоединив его проводником к соответствующим контактам батарейки;
  6. дополнить тематический декор прибора.

Совет: «Бусинки глаз для робота, декоративные рожки-усики из проволоки, ножки-пружинки, диодные лампочки помогут одушевить даже самый скучный механизм. Эти элементы можно крепить при помощи клея или скотча».

Сделать механизм такого робота можно за несколько часов, после чего остаётся придумать роботу имя и представить восхищенным зрителям. Наверняка некоторые из них подхватят новаторскую задумку и смогут смастерить собственных механических персонажей.

Известные умные автоматы

Милый робот Валл-И располагает к себе зрителя одноимённого фильма, заставляя сопереживать его драматическим приключениям, тогда как Терминатор демонстрирует мощь бездушной непобедимой машины. Персонажи Звёздных войн – верные дроиды R2D2 и C3PO, сопровождают в путешествиях по далёкой-далёкой Галактике, а романтический Вертер даже жертвует собой в схватке с космическими пиратами.

За пределами кинематографа также существуют механические роботы. Так, мир восхищается умениями робота-гуманоида Асимо, который умеет ходить по лестнице, играть в футбол, подавать напитки и вежливо здороваться. Марсоходы Спирит и Кьюриосити оборудованы автономными химическими лабораториями, позволившими сделать анализ образцов марсианских почв. Беспилотные автомобили-роботы могут передвигаться без участия человека, даже по сложным городским улицам с высокими рисками непредвиденных событий.

Возможно, именно из домашних проб создания первых интеллектуальных механизмов, вырастут изобретения, которые изменят техническую панораму будущего и жизнь человечества.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта